

Exploring Multiple Design Topologies Using Genetic Programming
and Bond Graphs

Zhun Fan

Electrical and Computer Engineering
Michigan State University
East Lansing, MI 48824

Kisung Seo

Genetic Algorithms Research and
Applications Group

Michigan State University
2857 W. Jolly Rd., Okemos, MI 48864

Ronald C. Rosenberg

Dept. of Mechanical Engineering
Michigan State University
East Lansing, MI 48824

Jianjun Hu
Computer Science and Engineering

Michigan State University
East Lansing, MI 48824

Erik D. Goodman
Genetic Algorithms Research and

Applications Group
Michigan State University

2857 W. Jolly Rd., Okemos, MI 48864

Abstract

To realize design automation of dynamic
systems, there are two major issues to be dealt
with: open-topology generation of dynamic
systems and simulation or analysis of those
models. For the first issue, we exploit the strong
topology exploration capability of genetic
programming to create and evolve structures
representing dynamic systems. With the help of
ERCs (ephemeral random constants) in genetic
programming, we can also evolve the sizing of
dynamic system components along with the
structures. The second issue, simulation and
analysis of those system models, is made more
complex when they represent mixed-energy-
domain systems. We take advantage of bond
graphs as a tool for multi- or mixed-domain
modeling and simulation of dynamic systems.
Because there are many considerations in
dynamic system design that are not completely
captured by a bond graph, we would like to
generate multiple solutions, allowing the
designer more latitude in choosing a model to
implement. The approach in this paper is capable
of providing a variety of design choices to the
designer for further analysis, comparison and
trade-off. The approach is shown to be efficient
and effective in an example of open-ended real-
world dynamic system design application, a
printer re-design problem.

1 INTRODUCTION
In general, design of dynamic systems includes two steps:
conceptual design and detailed design. In the conceptual
design phase, the following questions should be answered
(Tay et al. 1998): 1) What is the exact design problem to
be solved? (This requires a complete and consistent listing

of the requirements), and 2) what are the key problem
areas in the solution? (This requires the identification of
critical parts of the solution that will determine the
performance). Then the process of detailed design can be
undertaken, identifying those candidate solutions that
meet the requirements and provide the level of
performance needed. The research in this paper focuses
on the detailed design of dynamic systems. The strategy is
to develop an automated procedure capable of exploring
the search space of candidate dynamical systems and
providing design variants that meet desired design
specifications or dynamical characteristics. The method
must be able to explore the design space in a topologically
open-ended manner, yet still find appropriate
configurations efficiently enough to be useful.

Much research has been done on design automation of
single domain systems using an evolutionary computation
approach. For example, automated design of analog
circuits has attracted much attention in recent years
(Grimbleby, 1995) (Lohn, 1999) (Koza, 1999) (Zhun,
2000). It could be classified into two categories: GA-
based and GP-based. Most GA-based approaches realize
topology optimization via a GA and parameter
optimization with numerical optimization methods
(Grimbleby, 1995). Some GA approaches also evolve
both topology and component parameters; however, they
typically allow only a limited number of components to
be evolved (Lohn, 1999). Although their work basically
achieves good results in analog circuit design, it is not
easily extendable to interdisciplinary systems like
mechatronic systems.

Design of interdisciplinary (multi-domain) dynamic
engineering systems, such as mechatronic systems, differs
from design of single-domain systems, such as electronic
circuits, mechanisms, and fluid power systems, in part
because of the need to integrate the several distinct
domain characteristics in predicting system behavior
(Coelingh et al.). However, most current modeling and
simulation tools that provide for representation at a

schematic, or topological, level have been optimized for a
single domain. The bond graph provides a unified model
representation across inter-disciplinary system domains.
Tay uses bond graphs and GA to generate and analyze
dynamic system designs automatically (Tay et al. 1998).
He uses nested GA to evolve both topology and
parameters for dynamic systems. However, the efficiency
of his approach is hampered by the weak ability of GA to
search in both topology and parameter spaces
simultaneously.

Genetic programming is an effective way to generate
design candidates in an open-ended, but statistically
structured, manner. There have been a number of research
efforts aimed at exploring the combination of genetic
programming with physical modeling to find good
engineering designs. Perhaps most notable is the work of
Koza et al.. He presents a single uniform approach using
genetic programming for the automatic synthesis of both
the topology and sizing of a suite of various prototypical
analog circuits, including low-pass filters, operational
amplifiers, and controllers. This approach appears to be
very promising, having produced a number of patentable
designs for useful artifacts. It is closely related to our
approach, except that it searches in a single energy
domain.

We investigate an approach combining genetic
programming and bond graphs to automate the process of
design of dynamic systems to a significant degree. To
improve the topology search capability of GP and enable
it to provide a diversity of choices to the designer, a
special form of parallel GP, the Hierarchical Fair
Competition GP (HFC-GP), is used in this paper (Hu, et
al., 2002). The efficiency and effectiveness of the
approach are illustrated in an interesting redesign example
involving the drive mechanism for an electric printer.
Several design alternatives for the printer drive are
derived through exploring open-topologies in bond graph
space. It turns out that some of them are obviously
physically realizable and others are not.

2 DESIGN DOMAIN AND
METHODOLOGY

2.1 MULTI-DOMAIN DYNAMIC SYSTEMS
Multi-domain system design differs from conventional
design of electronic circuits, mechanical systems, and
fluid power systems in part because of the need to
integrate several types of energy behavior as part of the
basic design. For example, in addition to appropriate
“drivers” (sources), lumped-parameter dynamical
mechanical systems models typically include at least
masses, springs and dampers (Figure 1 a)) while “RLC”
electric circuits include resistors, inductors and capacitors
(Figure 1 b)). However, they could both be expressed in
the same bond graph (Figure 1 c)).

2.2 BOND GRAPHS

The bond graph is a modeling tool that provides a unified
approach to the modeling and analysis of dynamic
systems, especially hybrid multi-domain systems
including mechanical, electrical, pneumatic, hydraulic,
etc. (Karnopp et al. 2000). It is the explicit representation
of model topology that makes the bond graph a good
candidate for use in open-ended design searching. For
notation details and methods of system analysis related to
the bond graph representation see Karnopp et al. and
Rosenberg (Rosenberg et al, 1992). Much recent research
has explored the bond graph as a tool for design (Sharpe
and Bracewell 1995, Tay et al. 1998, Youcef-Toumi
1999, Redfield 1999).

In our research, the bond graph has additional desirable
characteristics for selection as the tool for system
representation and simulation. The evaluation efficiency
of the bond graph model can be improved because
analysis of causal relationships and power flow between
elements and subsystems can be done quickly and easily,
and reveals certain important system properties and
inherent characteristics. This makes it possible to discard
infeasible design candidates even before numerically
evaluating them, thus reducing time of evaluation to a
large degree. Because virtually all of the circuit
topologies passing causal analysis can be simulated, our
system does not need to check validity conditions of
individual circuits to avoid singular situations that could
interrupt the running of a program evaluating them.

Another characteristic of bond graphs is their ease of
mapping to the engineering design process (Xia, et al.
1991). Because each component of the system can be
represented correspondingly in a bond graph, junctions
and elements can be added to or deleted from a model
without causing dramatic changes. This emulates the

Figure 1. Dynamic systems and bond graph representation : a)
mechanical, b) electrical , and c) bond graph that represents both

L i

R

C

k

F(t)
m

b

x

a) b)

c)

Table 1 Function and terminal set for bond graph evolution

engineering process of modifying systems, refining
simple designs discovered initially, adding size and
complexity as needed to meet more complicated design
demands step by step. As genetic programming usually
shows a weak causality of structure evolution (Rosca,
1995), this potential strong causality of the bond graph
modification process also makes bond graph
representation an attractive technique to use in genetic
programming to explore the open-ended dynamic system
design space in an evolutionary process.

2.2 GENETIC PROGRAMMING AND BOND
GRAPHS

The tree representation on GP chromosomes, as compared
with the string representation typically used in GA, gives
GP more flexibility to encode solution representations for
many real-world design applications. The bond graph,
which can contain cycles, is not represented directly on
the GP tree—instead, the function set (nodes of the tree)
encode a constructor for a bond graph.

We define the GP functions and terminals for bond graph
construction as follows. There are four types of functions:
first, add functions that can be applied only to a junction
and which add a C, I, or R element; second, insert
functions that can be applied to a bond and which insert a
0-junction or 1-junction into the bond; third, replace
functions that can be applied to a node and which can
change the type of element and corresponding parameter
values for C, I, or R elements; and fourth, arithmetic
functions that perform arithmetic operations and can be
used to determine the numerical values associated with
components (Table 1). Details of function definitions are
illustrated in Seo et al. (2001).

2.3 DESIGN PROCEDURE
The flow of the entire algorithm is shown in Figure 2. The
user specifies the embryonic physical model for the target
system (i.e., its interface to the external world, in terms of
which the desired performance is specified) After that, an
initial population of GP trees is randomly generated. Each
GP tree maps to a bond graph tree. Analysis is then
performed on each bond graph tree. This analysis consists
of two steps – causal analysis and state equation analysis.
After the (vector) state equation is obtained, the important
dynamic characteristics of the system are sent to the
fitness evaluation module and the fitness of the tree is
evaluated. For each evaluated and sorted population,
genetic operations – selection, crossover, mutation and
reproduction – are carried out to seek design candidates
with improved quality. The loop of bond graph analysis
and GP operation is iterated until a termination condition
is satisfied or a specified number of iterations performed.
The final step is to instantiate a physical design, replacing
the bond graph with the physical components represented.

3 CASE STUDY

3.1 PROBLEM FORMULATION
The original problem was presented by C. Denny and W.
Oates of IBM, Lexington, KY, in 1972. Figure 3 shows a
closed-loop control system to position a rotational load

Name Description

 add_C

 add_I

 add_R

 insert_J0

 insert_J1

 replace_C

 replace_ I

 replace_ R

 +

 -

 endn

 endb

 endr

 erc

 Add a C element to junctions

 Add an I element to junctions

 Add an R element to junctions

 Insert a 0-junction in bond

 Insert a 1-junction in bond

 Replace current element with C element

 Replace current element with I element

 Replace current element with R element

 Add two ERCs

 Subtract two ERCs

 End terminal for add element operation

 End terminal for insert junction operation

 End terminal for replace element operation

 Ephemeral random constant (ERC)

Specify physical schematic embryo

Specify embryo bond graph

Create initial population of GP tree

Fitness evaluation for each individual

Selection for each population

Reproduction, crossover, mutation

Physical realization

Termination
criteria?

YES

NO

Figure 2. Flow chart of the design procedure

(inertia) denoted as JL. The problem with the design is
that the position output of the load JL has intense
vibrations (see Figure 4). The design specification is to
reduce the vibration of the load to an acceptable level,
given certain command conditions for rotational position.

We want the settling time to be less than 70ms when the
input voltage is stepped from zero to one. Note that the
settling time of the original system is about 2000ms. The
time scale in Figure 4 is 4000 ms.

The system includes electric voltage source, motor and
mechanical parts. As it is a multi-domain system, a bond
graph is convenient to use for modeling.

By analyzing the model, we conclude that the critical part
for the design is a subsystem that involves the drive shaft
and the load (Figure 5). The input is the driving torque,
Td, generated through the belt coupling back to the motor
(not shown).

This subsystem was deemed a logical place to begin the
design problem. The questions left to the designer now
are: 1) at which exact spots of the subsystem new
components should be inserted, 2) which types of
components and how many of them should be inserted, in
which manner, and 3) what should be the values of the
parameters for the components to be added? The
approach reported in this paper is able to answer these
three questions in one stroke in an automated manner,
once the embryo system has been defined.

3.2 AN EMBRYO FOR EVOLUTION
To search for a new design using the BG/GP design tool,
an embryo model is required. The embryo model is the
fixed part of the system and the starting point for GP to
generate candidates of system designs by adding new
components in a developmental manner. The embryo used
for this example, expressed in bond graph language, is
shown in Figure 6, with the modifiable sites highlighted.
The modifiable sites are places that new components can
be added. The choice of modifiable sites is typically easy
for the designer to decide. However, modifiable sites are
only possible spots for insertion of new components –
they are not necessarily inserted to any particular one of
them. In this particular example, designers need have no
idea whether assemblies of new components will be
inserted at modifiable site (1), or at modifiable site (2) , at
site(3), or at any combinations of them. Instead, the
algorithm will answer these questions in an automatic
way, without intervention by the human designer.

The parameters for the embryo model are:

sI : 26107.6 mkg ⋅× −

sR : radmN sec10013.0 3 ⋅⋅× −

1sC : radmN ⋅⋅208.0

2sC : radmN ⋅⋅208.0

Tit le

0 500 10 00 1500 2000 2500 3000 3500 4 000
t im e(m s)

po
si

tio
n

0

0.5

1

1.5

2

Figure 4. a) Bond graph model b) Positional vibration of the load

 Figure 5. The embryo subsystem

Figure 3. Schematic of the printer drive system

Integral

Figure 6. Bond graph model for the embryo system

1

WS

0

I
IS

R
RS

0

C
CS1

I
IL

R
RL

C
CS2

MSe
MSe1Constant1

TF
TF1

TF
TF2

1

WL

�

Integrate1

K

Gain1

(1)

(2)

(3)

LR : radmN sec1058.0 3 ⋅⋅× −

LI : 26103.84 mkg ⋅× −

3.3 THE HFC MODEL OF PARALLEL
GENETIC PROGRAMMING

A special form of parallel GP, HFC-GP is applied in this
research. In the HFC (Hierarchical Fair Competing)
model (Fig 7), multiple subpopulations are organized in a
hierarchy, in which each subpopulation can only
accommodate individuals within a specified range of
fitnesses (Hu et al, 2002). New individuals are created
continuously in the bottom layer. Use of the HFC model
balances exploration and exploitation of GP effectively.
Our experience shows that using the HFC model can also
substantially increase the topological diversity of the
whole population and help to provide the designer a
diverse set of competing design candidates for further
trade-offs.

3.4 DEFINITION OF FITNESS FUNCTION
The fitness function of individual design is defined

according to the position output response of the load JL as
follows.

Within the time range of interest (0~500ms in this
example), uniformly sample 1000 points of the output
response (yielding a time interval between two adjacent
sampling points of 0.5ms). Compare the magnitudes of
the position output of the load JL at the sample points with
target magnitudes (unity in this example), compute their
difference and get a squared sum of differences as raw
fitness, defined as rawFitness . Then calculate
normalized fitness according to:

()rawnorm FitnessFitness ++= 200010005.0

It can be assumed approximately that the higher the
normalized fitness, the better the design. Two reasons
make the fitness definition an approximate one: 1) it does
not reflect directly the strict definition of settling time,
and 2) it does not include other considerations in design
of the system except output response. A modified fitness
function could be defined later if required. However, in
this research, the definition is enough to manifest the
feasibility and efficiency of the approach reported. The
design results achieved (Figures 9-16) show performances
satisfying the design specification presented in this
research.

3.5 EXPERIMENTAL SETUP
We used a strongly-typed version [Luke, 1997] of lilgp
[Zongker and Punch, 1996] to generate bond graph
models. The major GP parameters were as shown below:

Number of generations: 500
Population size: 500
Initial population: half_and_half
Initial depth: 4-6
Max depth: 16
Max nodes: 1000
Selection: tournament (size=7)
Crossover: 0.8
Mutation: 0.2

Three major code modules were created in our work. The
algorithm kernel of HFC-GP was a modified version of an
open software package developed in our research group --
lilgp. A bond graph class was implemented in C++. The
fitness evaluation package is C++ code converted from
Matlab code, with hand-coded functions used to interface
with the other modules of the project. The commercial
bond graph software package 20Sim was used to verify
the dynamic characteristics of the evolved design.

The GP program obtains satisfactory results on a
Pentium-IV 1GHz in 5~15 minutes, which shows the
efficiency of our approach in finding good design
candidates.

3.6 EXPERIMENTAL OBSERVATIONS
The fitness improvement curve of GP algorithm is plotted
versus generation number in Figure 8.

Three competing design candidates with different
topologies, as well as their performances and possible
physical realizations, are provided in Figures 9-16. We
can see from the output rotational position responses that
they all satisfy the design specification of settling time
less than 70ms. Note that the time scale of the plots is 100
ms.

In HFC model, subpopulations are organized in a hierarchy with
ascending fitness level. Each subpopulation accomodates
individuals within a certaiin fitness range determined by the
admission thresholds

fitness

fmin

fmax
subpop5

subpop4

subpop3

subpop2

subpop1

subpop0

Admission
threshold 1

Admission
threshold 2

Admission
threshold 3

Admission
lthreshold 4

Admission
threshold 5

Admission
Buffers

 Figure 7. Hierarchical Fair Competition Model in GP

Design variant 1 is represented in Figure 9. Two new
components (R, C) are added with a 0-junction at
modifiable site (1). The parameters of the components
added are also given. Dashed circles highlight the newly
evolved components in the bond graph figures. Figure 10
displays rotational position output for variant 1.

Figure 11 gives one possible physical realization of
design variant 1. One damper and one spring are
connected to the embryo model.

Variant 2 adds new components to modifiable site (2) and
modifiable site (3) as shown in Figure 12. Figure 13
displays rotational position output for variant 2.

Figure 14 gives one possible physical realization of
design variant 2.

1 0 1

I
IS

R
RS

0

C
CS1

I
IL

R
RL

C
CS2

R
RA

C
CA

MSe
Constant1

K

Gain1

TF
TF1

TF
TF2

0

lim
�

Integrate1

Title

0 20 40 60 80 100
time(ms)

st
at

e

0

0.5

1

1.5

RA: 12.6957E-03 N m sec / rad

CA: 0.1962 N m / rad

Figure 9. Bond graph model of design variant 1

Figure 10. Position output of design variant 1

Title

0 20 40 60 80 100
time(ms)

ou
tp

ut

0

0.5

1

1.5

Figure 12. Bond graph model of design variant 2

R20: 75.101E-03 N m sec / rad

R15: 0.142E-03 N m sec / rad C17: 10.000 N m / rad

1

WS

0 1

WL

I
IS

R
RS

C
CS1

I
IL

R
RL

C
CS2

MSe
MSe1Constant1

K

Gain1

TF
TF1

TF
TF2

lim
�

Integral

10

R

R15

C

C17

0

R
R20

Figure 13. Position output of design variant 2

Figure 11. Physical realization of design variant 1
Figure 8. Fitness Improvement Curve

Design variant 3 is represented in Figure 15. Variant 3
adds new components to modifiable site (1) and
modifiable site (2). Figure 16 displays rotational position
output for variant 3. The bond graph model of variant 3 is
not obviously physically realizable, because component I
is attached to a 0-junction.

It is clear that the approach reported in this research is
both efficient and effective, capable of providing
designers with a variety of design alternatives. This gives
designers considerable flexibility to generate and to
compare a large variety of design schemes.

4 CONCLUSIONS
This research has explored a new automated approach for
synthesizing designs for dynamic systems. By taking
advantage of genetic programming as a search method for
competent designs and the bond graph as a representation
for dynamic systems, we have created a design
environment in which open-ended topological search can
be accomplished in an automated and efficient manner
and the design process thereby facilitated.

The paper illustrates the process of using this approach in
detail through a printer redesign problem. Bond graphs
have proven to be an effective tool for both modeling and
design in this problem. A special form of parallel GP, the
Hierarchical Fair Competition-GP, has been shown to be
capable of providing a diversity of competing designs
with great efficiency.

We plan to continue our research by identifying improved
methods for minimizing the occurrence of unrealizable
bond graph designs. One such approach is to use multi-
objective evolutionary computation to shape the results. A
second approach is to use a set of revised GP operators to
build bond graphs that avoid unrealizable models.

Acknowledgments
The authors gratefully acknowledge the support of the
National Science Foundation through grant DMI
0084934.

References
H. J. Coelingh, T. de Vries, and J. Amerongen (1998)
Automated Performance Assessment of Mechatronic
Motion Systems during the Conceptual Design Stage.
Proc. 3rd Int’l Conf. on Adv. Mechatronics, Okayama,
Japan.

Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, and B.
Zhang (2001). Bond Graph Representation and GP for
Automated Analog Filter Design, Proceedings of the
Genetic and Evolutionary Computation Conference: 81-
86.

J. B. Grimbleby (2000). Automatic analogue circuit
synthesis using genetic algoriths. IEE Proc. – Circuits
Devices Syst. : 319-323.

J. Hu, E. D. Goodman (2002). The Hierarchical Fair
Competition (HFC) Model for Parallel Evolutionary
Algorithms. Congress on Evolutionary Computation .

D. C. Karnopp, D. L. Margolis and R. C. Rosenberg
(2000). System Dynamics: Modelling and Simulation of
Mechatronic Systems. Third Edition. New York: John
Wiley & Sons, Inc.

J. R. Koza (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, The MIT Press.

Title

0 20 40 60 80 100
time(ms)

ou
tp

ut

0

0.5

1

1.5

Figure 16. Position output of design variant 3

Figure 15. Bond graph model of design variant 3

1 0 1

I
IS

R
RS

0

C
CS1

I
IL

R
RL

C
CS2

R
RA

MSe
Constant1

K
Gain1

TF
TF1

TF
TF2

I
I17

lim
�

Integral

RA: 13.899E-03 N m sec / rad

I17: 15.022E-06 kg m^2

Figure 14. Physical realization of design variant 2

J. R. Koza, F. H. Bennett III, D. Andre and M. A. Keane
(1999b). The design of analogue circuits by
means of genetic programming. In P. J. Bentley (ed.),
Evolutionary Design by Computers, 365-385. London:
John Wiley & Sons Ltd.

 J. D. Lohn, S. P. Colombano (1999). A circuit
representation techniques for automated circuit design.
IEEE Transactions on Evolutionary Computation: 205-
219.

S. Luke, 1997, Strongly-Typed, Multithreaded C Genetic
Programming Kernel, http://www.cs.umd.edu/users/-
seanl/gp/patched-gp/.

 H. M. Paynter (1991). An epistemic prehistory of

bond graphs. In P. C. Breedveld and G. Dauphin-Tanguy
(ed.), Bond Graphs for Engineers, 3-17. Amsterdam, The
Netherlands: Elsevier Science Publishers.

 R.C. Redfield (1999). Bond Graphs in Dynamic Systems

Designs: Concepts for a Continuously Variable
Transmission. International Conference on Bond Graph
Modeling and Simulation: 225-230.

J. P. Rosca , D. H. Ballard (1995), Causality in
genetic programming. In L. Eshelman (ed.), Genetic
Algorithms: Proceedings of the Sixth International
Conference (ICGA95), 256-263. San Francisco, CA:
Morgan Kaufmann.

 R.C. Rosenberg, J. Whitesell, and J. Reid (1992).
Extendable Simulation Software for Dynamic Systems.
Simulation 58: 175-183.

K. Seo, E. D. Goodman and R. C. Rosenberg
(2001). First steps toward automated design of
mechatronic systems using bond graphs and genetic
programming. Proceedings of the Genetic and
Evolutionary Computation Conference : 189.

 J.E. Sharpe , and R.H. Bracewell (1995). The Use of Bond
Graph Reasoning for the Design of Interdisciplinary
Schemes. International Conference on Bond Graph
Modeling and Simulation: 116-121.

E. H. Tay, Woodie Flowers and John Barrus (1998).
Automated Genration and Analysis of Dynamic System
Designs. Research in Engineering Design 10: 15-29.

S. Xia, D. A. Linkens and S. Bennett (1991).
Integration of qualitative reasoning and bond graphs: an
engineering approach. In P. C. Breedveld and G.
Dauphin-Tanguy(ed.), Bond Graphs for Engineers, 323-
332. Amsterdam, The Netherlands: Elsevier Science
Publishers.

 K. Youcef-Toumi, Y. Ye., A. Glaviano, and P. Anderson
(1999). Automated Zero Dynamics: Derivation from
Bond Graph Models. International Conference on Bond
Graph Modeling and Simulation: 39-44.

D. Zongker and W.F. Punch, III, 1998, lil-gp 1.1 User’s
Manual, GARAGe, College of Engineering, Michigan
State University.

