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Abstract 

To realize design automation of dynamic 
systems, there are two major issues to be dealt 
with: open-topology generation of dynamic 
systems and simulation or analysis of those 
models. For the first issue, we exploit the strong 
topology exploration capability of genetic 
programming to create and evolve structures 
representing dynamic systems.  With the help of 
ERCs (ephemeral random constants) in genetic 
programming, we can also evolve the sizing of 
dynamic system components along with the 
structures.  The second issue, simulation and 
analysis of those system models, is made more 
complex when they represent mixed-energy-
domain systems. We take advantage of bond 
graphs as a tool for multi- or mixed-domain 
modeling and simulation of dynamic systems. 
Because there are many considerations in 
dynamic system design that are not completely 
captured by a bond graph, we would like to 
generate multiple solutions, allowing the 
designer more latitude in choosing a model to 
implement. The approach in this paper is capable 
of providing a variety of design choices to the 
designer for further analysis, comparison and 
trade-off. The approach is shown to be efficient 
and effective in an example of open-ended real-
world dynamic system design application, a 
printer re-design problem.  

1 INTRODUCTION 
In general, design of dynamic systems includes two steps: 
conceptual design and detailed design. In the conceptual 
design phase, the following questions should be answered 
(Tay et al. 1998): 1) What is the exact design problem to 
be solved? (This requires a complete and consistent listing 

of the requirements), and 2) what are the key problem 
areas in the solution? (This requires the identification of 
critical parts of the solution that will determine the 
performance). Then the process of detailed design can be 
undertaken, identifying those candidate solutions that 
meet the requirements and provide the level of 
performance needed. The research in this paper focuses 
on the detailed design of dynamic systems. The strategy is 
to develop an automated procedure capable of exploring 
the search space of candidate dynamical systems and 
providing design variants that meet desired design 
specifications or dynamical characteristics. The method 
must be able to explore the design space in a topologically 
open-ended manner, yet still find appropriate 
configurations efficiently enough to be useful.    

Much research has been done on design automation of 
single domain systems using an evolutionary computation 
approach. For example, automated design of analog 
circuits has attracted much attention in recent years 
(Grimbleby, 1995) (Lohn, 1999) (Koza, 1999) (Zhun, 
2000). It could be classified into two categories: GA-
based and GP-based. Most GA-based approaches realize 
topology optimization via a GA and parameter 
optimization with numerical optimization methods 
(Grimbleby, 1995).  Some GA approaches also evolve 
both topology and component parameters; however, they 
typically allow only a limited number of components to 
be evolved (Lohn, 1999). Although their work basically 
achieves good results in analog circuit design, it is not 
easily extendable to interdisciplinary systems like 
mechatronic systems.   

Design of interdisciplinary (multi-domain) dynamic 
engineering systems, such as mechatronic systems, differs 
from design of single-domain systems, such as electronic 
circuits, mechanisms, and fluid power systems, in part 
because of the need to integrate the several distinct 
domain characteristics in predicting system behavior  
(Coelingh et al.). However, most current modeling and 
simulation tools that provide for representation at a 



   

schematic, or topological, level have been optimized for a 
single domain. The bond graph provides a unified model 
representation across inter-disciplinary system domains. 
Tay uses bond graphs and GA to generate and analyze 
dynamic system designs automatically (Tay et al. 1998). 
He uses nested GA to evolve both topology and 
parameters for dynamic systems. However, the efficiency 
of his approach is hampered by the weak ability of GA to 
search in both topology and parameter spaces 
simultaneously.   

Genetic programming is an effective way to generate 
design candidates in an open-ended, but statistically 
structured, manner. There have been a number of research 
efforts aimed at exploring the combination of genetic 
programming with physical modeling to find good 
engineering designs. Perhaps most notable is the work of 
Koza et al.. He presents a single uniform approach using 
genetic programming for the automatic synthesis of both 
the topology and sizing of a suite of various prototypical 
analog circuits, including low-pass filters, operational 
amplifiers, and controllers. This approach appears to be 
very promising, having produced a number of patentable 
designs for useful artifacts. It is closely related to our 
approach, except that it searches in a single energy 
domain.  

We investigate an approach combining genetic 
programming and bond graphs to automate the process of 
design of dynamic systems to a significant degree. To 
improve the topology search capability of GP and enable 
it to provide a diversity of choices to the designer, a 
special form of parallel GP, the Hierarchical Fair 
Competition GP (HFC-GP), is used in this paper (Hu, et 
al., 2002). The efficiency and effectiveness of the 
approach are illustrated in an interesting redesign example 
involving the drive mechanism for an electric printer.  
Several design alternatives for the printer drive are 
derived through exploring open-topologies in bond graph 
space. It turns out that some of them are obviously 
physically realizable and others are not. 

2 DESIGN DOMAIN AND 
METHODOLOGY   

2.1 MULTI-DOMAIN DYNAMIC SYSTEMS 
Multi-domain system design differs from conventional 
design of electronic circuits, mechanical systems, and 
fluid power systems in part because of the need to 
integrate several types of energy behavior as part of the 
basic design. For example, in addition to appropriate 
“drivers” (sources), lumped-parameter dynamical 
mechanical systems models typically include at least 
masses, springs and dampers (Figure 1 a)) while “RLC” 
electric circuits include resistors, inductors and capacitors 
(Figure 1 b)). However, they could both be expressed in 
the same bond graph (Figure 1 c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 BOND GRAPHS 

The bond graph is a modeling tool that provides a unified 
approach to the modeling and analysis of dynamic 
systems, especially hybrid multi-domain systems 
including mechanical, electrical, pneumatic, hydraulic, 
etc. (Karnopp et al. 2000). It is the explicit representation 
of model topology that makes the bond graph a good 
candidate for use in open-ended design searching. For 
notation details and methods of system analysis related to 
the bond graph representation see Karnopp et al. and 
Rosenberg (Rosenberg et al, 1992).  Much recent research 
has explored the bond graph as a tool for design (Sharpe 
and Bracewell 1995, Tay et al. 1998, Youcef-Toumi 
1999, Redfield 1999). 

In our research, the bond graph has additional desirable 
characteristics for selection as the tool for system 
representation and simulation. The evaluation efficiency 
of the bond graph model can be improved because 
analysis of causal relationships and power flow between 
elements and subsystems can be done quickly and easily, 
and reveals certain important system properties and 
inherent characteristics.  This makes it possible to discard 
infeasible design candidates even before numerically 
evaluating them, thus reducing time of evaluation to a 
large degree.  Because virtually all of the circuit 
topologies passing causal analysis can be simulated, our 
system does not need to check validity conditions of 
individual circuits to avoid singular situations that could 
interrupt the running of a program evaluating them. 

Another characteristic of bond graphs is their ease of 
mapping to the engineering design process (Xia, et al. 
1991). Because each component of the system can be 
represented correspondingly in a bond graph, junctions 
and elements can be added to or deleted from a model 
without causing dramatic changes. This emulates the 

Figure 1.  Dynamic systems and bond graph representation :  a) 
mechanical, b) electrical , and c) bond graph that represents both 
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Table 1 Function and terminal set for bond graph evolution 

engineering process of modifying systems, refining 
simple designs discovered initially, adding size and 
complexity as needed to meet more complicated design 
demands step by step. As genetic programming usually 
shows a weak causality of structure evolution (Rosca, 
1995), this potential strong causality of the bond graph 
modification process also makes bond graph 
representation an attractive technique to use in genetic 
programming to explore the open-ended dynamic system 
design space in an evolutionary process.  

2.2 GENETIC PROGRAMMING AND BOND 
GRAPHS 

The tree representation on GP chromosomes, as compared 
with the string representation typically used in GA, gives 
GP more flexibility to encode solution representations for 
many real-world design applications. The bond graph, 
which can contain cycles, is not represented directly on 
the GP tree—instead, the function set (nodes of the tree) 
encode a constructor for a bond graph.  

We define the GP functions and terminals for bond graph 
construction as follows.  There are four types of functions:  
first, add functions that can be applied only to a junction 
and which add a C, I, or R element;  second, insert 
functions that can be applied to a bond and which insert a 
0-junction or 1-junction into the bond; third, replace 
functions that can be applied to a node and which can 
change the type of element and corresponding parameter 
values for C, I, or R elements; and fourth, arithmetic 
functions that perform arithmetic operations and can be 
used to determine the numerical values associated with 
components (Table 1). Details of function definitions are 
illustrated in Seo et al. (2001). 

 

  

2.3 DESIGN PROCEDURE 
The flow of the entire algorithm is shown in Figure 2. The 
user specifies the embryonic physical model for the target 
system (i.e., its interface to the external world, in terms of 
which the desired performance is specified) After that, an 
initial population of GP trees is randomly generated. Each 
GP tree maps to a bond graph tree.  Analysis is then 
performed on each bond graph tree. This analysis consists 
of two steps – causal analysis and state equation analysis.  
After the (vector) state equation is obtained, the important 
dynamic characteristics of the system are sent to the 
fitness evaluation module and the fitness of the tree is 
evaluated.  For each evaluated and sorted population, 
genetic operations – selection, crossover, mutation and 
reproduction – are carried out to seek design candidates 
with improved quality. The loop of bond graph analysis 
and GP operation is iterated until a termination condition 
is satisfied or a specified number of iterations performed.  
The final step is to instantiate a physical design, replacing 
the bond graph with the physical components represented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 CASE STUDY 

3.1 PROBLEM FORMULATION 
The original problem was presented by C. Denny and W. 
Oates of IBM, Lexington, KY, in 1972.  Figure 3 shows a 
closed-loop control system to position a rotational load 

Name Description 

  add_C 

  add_I 

  add_R 

  insert_J0 

  insert_J1 

  replace_C 

  replace_ I 

  replace_ R 

  + 

  - 

  endn 

  endb 

  endr 

  erc 

   Add a C element to junctions 

    Add an I element to junctions 

    Add an R element to junctions 

     Insert a 0-junction in bond 

     Insert a 1-junction in bond 

     Replace current element with C element  

     Replace current element with I element  

     Replace current element with R element  

     Add two ERCs 

     Subtract two ERCs  

     End terminal for add element operation 

     End terminal for insert junction operation 

     End terminal for replace element  operation 

     Ephemeral random constant (ERC) 

Specify physical schematic embryo 

Specify embryo bond graph 

Create initial population of GP tree 

Fitness evaluation for each individual 

Selection for each population 

Reproduction, crossover, mutation 

Physical realization 

Termination 
criteria? 

YES 

NO 

Figure 2. Flow chart of the design procedure 



   

(inertia) denoted as JL.  The problem with the design is 
that the position output of the load JL has intense 
vibrations (see Figure 4).  The design specification is to 
reduce the vibration of the load to an acceptable level, 
given certain command conditions for rotational position.  

We want the settling time to be less than 70ms when the 
input voltage is stepped from zero to one. Note that the 
settling time of the original system is about 2000ms. The 
time scale in Figure 4 is 4000 ms. 

 

 

 

 

 

 

 

 

 

 

 

The system includes electric voltage source, motor and 
mechanical parts. As it is a multi-domain system, a bond 
graph is convenient to use for modeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By analyzing the model, we conclude that the critical part 
for the design is a subsystem that involves the drive shaft 
and the load (Figure 5). The input is the driving torque, 
Td, generated through the belt coupling back to the motor 
(not shown). 

This subsystem was deemed a logical place to begin the 
design problem. The questions left to the designer now 
are: 1) at which exact spots of the subsystem new 
components should be inserted, 2) which types of 
components and how many of them should be inserted, in 
which manner, and 3) what should be the values of the 
parameters for the components to be added?  The 
approach reported in this paper is able to answer these 
three questions in one stroke in an automated manner, 
once the embryo system has been defined. 

3.2 AN EMBRYO FOR EVOLUTION 
To search for a new design using the BG/GP design tool, 
an embryo model is required.  The embryo model is the 
fixed part of the system and the starting point for GP to 
generate candidates of system designs by adding new 
components in a developmental manner. The embryo used 
for this example, expressed in bond graph language, is 
shown in Figure 6, with the modifiable sites highlighted. 
The modifiable sites are places that new components can 
be added. The choice of modifiable sites is typically easy 
for the designer to decide. However, modifiable sites are 
only possible spots for insertion of new components – 
they are not necessarily inserted to any particular one of 
them. In this particular example, designers need have no 
idea whether assemblies of new components will be 
inserted at modifiable site (1), or at modifiable site (2) , at 
site(3), or at any combinations of them. Instead, the 
algorithm will answer these questions in an automatic 
way, without intervention by the human designer. 

 

 

 

 

 

 

 

 

 

 

 

The parameters for the embryo model are: 

sI : 26107.6 mkg ⋅× −   

sR : radmN sec10013.0 3 ⋅⋅× −   

1sC : radmN ⋅⋅208.0   

2sC : radmN ⋅⋅208.0  
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Figure 4.  a) Bond graph model b) Positional vibration of the load 

          Figure 5. The embryo subsystem 

Figure 3. Schematic of the printer drive system 
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Figure 6. Bond graph model for the embryo system 
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LR : radmN sec1058.0 3 ⋅⋅× −  

LI : 26103.84 mkg ⋅× −  

3.3 THE HFC MODEL OF PARALLEL 
GENETIC PROGRAMMING 

A special form of parallel GP, HFC-GP is applied in this 
research. In the HFC (Hierarchical Fair Competing) 
model (Fig 7), multiple subpopulations are organized in a 
hierarchy, in which each subpopulation can only 
accommodate individuals within a specified range of 
fitnesses (Hu et al, 2002). New individuals are created 
continuously in the bottom layer. Use of the HFC model 
balances exploration and exploitation of GP effectively. 
Our experience shows that using the HFC model can also 
substantially increase the topological diversity of the 
whole population and help to provide the designer a 
diverse set of competing design candidates for further 
trade-offs. 

 

3.4 DEFINITION OF FITNESS FUNCTION 
The fitness function of individual design is defined  

 

 

according to the position output response of the load JL as 
follows. 

Within the time range of interest (0~500ms in this 
example), uniformly sample 1000 points of the output 
response (yielding a time interval between two adjacent 
sampling points of 0.5ms).  Compare the magnitudes of 
the position output of the load JL at the sample points with 
target magnitudes (unity in this example), compute their 
difference and get a squared sum of differences as raw 
fitness, defined as rawFitness .  Then calculate 
normalized fitness according to: 

 

( )rawnorm FitnessFitness ++= 200010005.0
 

It can be assumed approximately that the higher the 
normalized fitness, the better the design.  Two reasons 
make the fitness definition an approximate one:  1) it does 
not reflect directly the strict definition of settling time, 
and 2) it does not include other considerations in design 
of the system except output response. A modified fitness 
function could be defined later if required. However, in 
this research, the definition is enough to manifest the 
feasibility and efficiency of the approach reported. The 
design results achieved (Figures 9-16) show performances 
satisfying the design specification presented in this 
research. 

3.5 EXPERIMENTAL SETUP 
We used a strongly-typed version [Luke, 1997] of lilgp 
[Zongker and Punch, 1996] to generate bond graph 
models.  The major GP parameters were as shown below: 

Number of generations:  500 
Population size:  500 
Initial population:  half_and_half 
Initial depth:  4-6     
Max depth:  16 
Max nodes: 1000 
Selection:  tournament (size=7) 
Crossover:  0.8    
Mutation:  0.2      
 
Three major code modules were created in our work. The 
algorithm kernel of HFC-GP was a modified version of an 
open software package developed in our research group -- 
lilgp. A bond graph class was implemented in C++. The 
fitness evaluation package is C++ code converted from 
Matlab code, with hand-coded functions used to interface 
with the other modules of the project. The commercial 
bond graph software package 20Sim was used to verify 
the dynamic characteristics of the evolved design. 

The GP program obtains satisfactory results on a 
Pentium-IV 1GHz in 5~15 minutes, which shows the 
efficiency of our approach in finding good design 
candidates. 
 

3.6 EXPERIMENTAL OBSERVATIONS 
The fitness improvement curve of GP algorithm is plotted 
versus generation number in Figure 8.  

Three competing design candidates with different 
topologies, as well as their performances and possible 
physical realizations, are provided in Figures 9-16. We 
can see from the output rotational position responses that 
they all satisfy the design specification of settling time 
less than 70ms. Note that the time scale of the plots is 100 
ms.  

 

In HFC model, subpopulations are organized in a hierarchy with
ascending fitness level. Each subpopulation accomodates
individuals within a certaiin fitness range determined by the
admission thresholds

fitness

fmin

fmax
subpop5

subpop4

subpop3

subpop2

subpop1

subpop0

Admission
threshold 1

Admission
threshold 2

Admission
threshold 3

Admission
lthreshold 4

Admission
threshold 5

Admission
Buffers

   Figure 7. Hierarchical Fair Competition Model in GP 



   

 

 

 

 

 

 

 

 

 

 

 

 

Design variant 1 is represented in Figure 9.  Two new 
components (R, C) are added with a 0-junction at 
modifiable site (1). The parameters of the components 
added are also given. Dashed circles highlight the newly 
evolved components in the bond graph figures. Figure 10 
displays rotational position output for variant 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 gives one possible physical realization of 
design variant 1.  One damper and one spring are 
connected to the embryo model. 

 

 

Variant 2 adds new components to modifiable site (2) and 
modifiable site (3) as shown in Figure 12. Figure 13 
displays rotational position output for variant 2. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 gives one possible physical realization of 
design variant 2.  
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Figure 10.  Position output of design variant 1  
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Figure 11.  Physical realization of design variant 1  
Figure 8. Fitness Improvement Curve 



   

Design variant 3 is represented in Figure 15.  Variant 3 
adds new components to modifiable site (1) and 
modifiable site (2). Figure 16 displays rotational position 
output for variant 3.  The bond graph model of variant 3 is 
not obviously physically realizable, because component I 
is attached to a 0-junction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear that the approach reported in this research is 
both efficient and effective, capable of providing 
designers with a variety of design alternatives. This gives 
designers considerable flexibility to generate and to 
compare a large variety of design schemes. 

4 CONCLUSIONS 
This research has explored a new automated approach for 
synthesizing designs for dynamic systems. By taking 
advantage of genetic programming as a search method for 
competent designs and the bond graph as a representation 
for dynamic systems, we have created a design 
environment in which open-ended topological search can 
be accomplished in an automated and efficient manner 
and the design process thereby facilitated.  

The paper illustrates the process of using this approach in 
detail through a printer redesign problem. Bond graphs 
have proven to be an effective tool for both modeling and 
design in this problem. A special form of parallel GP, the 
Hierarchical Fair Competition-GP, has been shown to be 
capable of providing a diversity of competing designs 
with great efficiency. 

We plan to continue our research by identifying improved 
methods for minimizing the occurrence of unrealizable 
bond graph designs. One such approach is to use multi-
objective evolutionary computation to shape the results. A 
second approach is to use a set of revised GP operators to 
build bond graphs that avoid unrealizable models. 
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